發表文章

目前顯示的是 1月, 2024的文章

O-RAN雲原生自動化的發展與挑戰

圖片
本文整理並逐一說明目前電信產業雲原生轉型,可能會面臨到的眾多挑戰,此外,說明為何電信產業已經引入了雲原生技術,卻仍舊無法真正地享受到雲原生轉型所帶來的各項好處。期望鼓勵更多莘莘學子投入 O-RAN 領域研發新議題,以助我國在半導體領域之外,再創國際新巔峰! Cloud RAN Automation 發展的現況和議題 1. 命令式機制在 RAN Automation 中的缺點 目前,要實現 RAN Automation,會需要先制定用於優化 Policy 以及觸發執行 Policy 的門檻(threshold) 。這些 Policy 可以用來自動調整 Network Function 的 Configuration 參數,以俾提高網路的效能,或讓佈署在 O-Cloud 上的 NFs 可以根據資源的負載狀況自動進行 scale-out、scale-in。 但由於目前的 NFs 仍是採用經典的 CNF、VNF,因此需要撰寫 helm chart 或 docker compose 來執行用於優化 Policy。然而,helm chart 和 docker compose 這些工具都還屬於命令式機制(imperative programming),這是一種開發人員早已制定好,明確要求 RAN 需執行的步驟,而非根據即時情況自動做出的決定;綜合以上所述,我們了解目前要實現 RAN Close loop Automation ,可以說是非常繁瑣。 2. 採用 Helm chart 部署 RAN 的侷限性 使用 Helm chart 部署 O-RAN 時存在一些侷限性。例如 Helm chart 的可重複利用率較低,因為它通常是針對特定使用場景來定制的,而且通常只會在 Day 1 部署時使用。而 RAN 這種東西,是需要長期維護的,而且部署在不同的使用場景(Scenario) 的 RAN,就必須有不同的 Helm chart,並且當服務需要升級時,就還會需要使用另一組 Helm chart 來進行升級和管理。 以台灣任一電信業者為例,它們通常會需要佈署大量的 RAN(基地台)在不同地點,因此僅 Day 1 的部署就會生成大量的 Helm chart。並且隨著時間的推移,管理和維護這些 Helm chart 的成本都會變得非常高昂。 用熱力學的概念來總結的話,就是說,想用 He...

生成式AI將電信業推向新紀元

圖片
電信產業如何應用生成式 AI? 究竟電信產業該如何引入生成式 AI (Generative AI),來解決業界長久以來的痛點呢?秀吉現在就報給你知! 前言 這個學年來捷克訪問,無法實體參與  Google Cloud Summit Taipei ,但身為國外的 GDSC Lead ,進修和教學還是責無旁貸,畢竟人生的樂趣在學習,人生的收穫在於奉獻 www 所以就忙裡偷閒在國外補檔一下  Google Cloud Summit Taipei | (中華電信)解析 Next’23 最新雲端技術 ;可能是因為主題安排或是時間關係,這場演講比較像是產品成果發表,技術偏少。 但沒關係,本篇文章將科普電信業引入生成式 AI 的魅力在哪?,同時針對演講中提到的 Data Cloud 服務應用與挑戰 做進一步的說明和科普。 簡而言之,這是一篇科普文,所以即使你沒聽過演講也看得懂 (廢話結束,以下正文) 電信產業如何應用生成式 AI 電信產業究竟如何應用生成式 AI,主要可以分成兩大使用範例(Use Cases): Customer Automation (用戶自動化) Network Automation (網路自動化) 一般人經常使用到的生成式 AI,大多都是 大型語言模型 (Large language model;LLM) ,那麼隨著越來越多人的使用和媒體的炒作,民眾對生成式 AI 衍生服務的接受度也將逐漸增加,而這點對於電信業者來說,是個非常好的機會,為什麼我會這樣說呢?讓我們繼續看下去! Customer Automation(用戶自動化) 對於絕大部分天然呆的台灣用戶來說:「電信供應商的好壞,在於客戶服務!」 所以只要將客服的體驗優化好,萬事皆好談! 以中華電信為例,它擁有全台 90% 的固網業務以及 1300萬個門號用戶;對於一間擁有如此龐大用戶的電信業者,最重要的就是導入生成式 AI(如:語音辨識模型、對話模型),用來實現 用戶自動化(Customer Automation) ,和以下目標: 更快解決客戶遇到的問題 減少客服中心收到的來電 確保電信業真的有善用自家強大的科技技術,實現用戶個人化的電信服務 所以台灣四大電信業者正面臨一個龐大的機會,透過導入生成式 AI 實現用戶自動化,即可徹底改變現狀(例如:使用機器學習來分析客訴情況的描...